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Fractional Linear Multistep Methods for 
Abel-Volterra Integral Equations of the Second Kind 

By Ch. Lubich 

Abstract. Fractional powers of linear multistep methods are suggested for the numerical 
solution of weakly singular Volterra integral equations. The proposed methods are convergent 
of the order of the underlying multistep method, also in the generic case of solutions which 
are not smooth at the origin. The stability properties (stability region, A-stability, A(a)-stabil- 
ity) are closely related to those of the underlying linear multistep method. 

1. Introduction. We consider the Abel integral equation of the second kind, 

(1) Y(t) = f(t) + P t1) f (t - s)Glg(s, y(s)) ds in RI 

t E- I:= [0, T], with fixed a > O. 

The case a-2 is encountered in a variety of problems in physics and chemistry; 
see, e.g., the references in [2], [19]. So far, numerical methods for (1) have usually 
been based on the concept of product integration ([1], [2], [3], [4] and the references 
given there). In the present work we suggest an entirely different approach. 

We consider convolution quadratures 

n m 

(2) Yn = f(tn) + ha2 (a)g(tj, yj) + ha E wnjg(tjyy), nh E I, 
j=0. j=0 

where h is the stepsize, and tn = nh. The convolution quadrature weights @(a) and 
the starting quadrature weights wnj (j = O,. . . m; m fixed) are independent of h. For 
the computation of Y.0... AYN one thus needs O(N) f- and g-evaluations and only 
O(N(log N )2) arithmetic operations if Fast Fourier Transform techniques as in [7] 
are used. 

In the special case a = 1 and f(t) yo, Eq. (1) reduces to the ordinary differential 
equation y' -g(t, y), y(O) = yo. If a linear multistep method (p, a) (where, as usual, 
p and a denote the generating polynomials of the method, see [8]) is applied to this 
initial-value problem, the method can be rewritten as a convolution quadrature (2) 
with weights cn given via their generating power series w(D) = So4 " by 

(3) W(M) = a(l/01p(l/0) 

see [17], [21], [13]. 
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The present work deals with the following question: Given a linear multistep 
method X = (p, a), can we use it to construct a convolution quadrature (2) for 
arbitrary a, which has the same convergence properties and the same (or even better) 
stability properties as the original multistep method? Under appropriate conditions 
on (p, a) the answer is positive and surprisingly simple: 

For the linear multistep method X = (p, a) we assume 
The method is stable and consistent of order p. The method is 

(4) implicit, and all zeros of a(D) have absolute value < 1. 
We define a convolution quadrature w' = (wna))* via its generating power series 
(a(g ) = o (aln 

(S) Wa(M) = wDa 

This can be interpreted as the linear multistep method X = (p, a) taken to the 
fractional power a. Such convolution quadratures, called fractional linear multistep 
methods, have been introduced by the author in [15]. A different approach is 
contained in [16]. In Sections 2 and 3 we show that wa has the desired convergence 
and stability properties. Fractional linear multistep methods are simple to imple- 
ment. In Section 4 we give a numerical example for a fractional backward differenti- 
ation method. 

2. Convergence. Instead of Eq. (1) we consider in this section the slightly more 
general integral equation 

(6) y(t) = f (t) + r() j (t - s)GlK(t, s, y(s)) ds in RW, t e I = [0, T], 

for fixed a > 0, under the following smoothness assumptions: 
K(t, s, y) is sufficiently differentiable on {(t, s, y); 0 < s < t < 

(7) T, y e Rn}, f(t) = F(t, ta) where F(tj, t2) is sufficiently differen- 
tiable. 

The solution y(t) is then unique on its nonempty existence interval, which is assumed 
to contain all of I. It can be written in the form (see [12]) 
(8) y(t) = Y(t, ta) for some sufficiently differentiable function 

Y(t1, t2)- 

Usually y(t) is not smooth at t = 0. 
We study the discretization (with notations as in (2)) 

n m 

(9) Yn = f ( tn ) + he a, w(21 K(tn, tj, yj) + ha a wnjK(tn, t;, y;), nh E I. 
j=O j=O 

We have the following convergence result. 

THEOREM 1. (Convergence of fractional linear multistep methods.) Let the linear 
multistep method w = (p, a) satisfy (4), and consider wo defined by (5). One can 
construct a starting quadrature wnj = O(na-l) (see (10) below) such that the error of 
the numerical solution yn, given by (9), for the exact solution y(t) of (6), (7) satisfies 

lyn -y(t)l < C * t/'-' . hP (t = nh), 
where the constant C does not depend on n and h with nh < T, h > h (h> 0 
sufficiently small). The exponent /B satisfies /3 > a, and, in particular, /B > 1 for 
a = 1 2 3 4 a- I -Si 495.. 
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Remark. If y(t) is actually smooth at t = 0, we can take I3=1 for all a > 0. 
Proof. The proof is based on the results in [15]. 
(a) Consistency error. We begin with the construction of the starting quadrature. 

Let A = { y = k + Ia; k, I > 0 integer, y < p - 1) and card A = m + 1. We choose 

w,,j (n > 0; j = 0, 1,. .. ,m) such that for all exponents y E A, 

ha ? W(a).(jh) + hax E w,,tjh ) 
(10) 1~~~=0 j=0 

(10) J= 
( ft (t - s) 'syds (t = nh). 

Then wnj are well-defined, independent of h and of magnitude O(na-'), see [15]. 
With the techniques of [15, Theorem 2.4] it follows that, for every function 

T(t) = 1(t, ta), with 4D(t1, t2) sufficiently smooth, we have 

ha L (a) (jh) + ha E Wn1(jh) 
(11) j 10 =0 

( 
t (t - )a-i (s) ds + O(t'3'l hP) 

uniformly for nh = t < T, where 
(12) 3 fa-p? I +min{y=k+la;k,I>0integery>p- 1} >a. 

The constant in the O(t,'-1 hP) term of (11) can be estimated by bounds on a 
finite number of derivatives of (. So the consistency error, given at t = nh by 

dn = ha t c1(a) K(tn, tj, y(tj)) + ha wnjK(t, to y(t,)) 
=0 J ~~~~~= 0 
,j-o~~~~~~ aj~ 

- 17(a) J1 -(t-s) K(t, s, y(s)) ds| 

can be estimated, because of (8) and (11), by 

(13) d M< t - . hP= MO,- 0"1A- hP+8-1 (nh = t < T) 
for some constant Ma. 

(b) Error propagation. Let L denote a (local) Lipschitz constant of K. For the 
global error of (9), 

en = 1Y, -Y(tn) 1 
we then have 

en < + haL( |@(a)IJe + E wajte1). 

From [15] we have 

(14) toad) O(nal), and also w=j O(n-1) forj 0,...,. 

Further, it is known (cf. [6, p. 471) that 

n9 1 
= (1 + O(n')) -(-1) ( -) for fixed t > 0. 

17O0 n 

Also, 

(-l)"( nA) > 0 for alln >0, if > 0. 
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Taking i = 18 in (13) and ju = a in (14) we obtain 

en < M - hP+:' .(-I)n( -) + hacL E (-I) ' -j j e. 
1=0 

for some constants M and c. Hence, 

(15) e <M-hP* n, 

where un is the nth coefficient of the power series Uh(M) = 20 U,4' defined by 

Uh(M) = h,'-(l - 
' 

+ cLha(1 - OUJO) 

i.e., 

Uh(a -U hi with U(Z) 1-c9-' 
h h I~~~~ - cLz-a 

U(z) is the Laplace transform of the function u(t), given as the solution of the linear 
integral equation 

_____ rt (t - S) 
u(t) =r +?cLJ 1() u(s)ds, t>0. 

F(f3)T() 

It is known from [20, Theorem XXI] (the Post-Widder inversion formula) that 

Un -u(t) as h -0 for fixed t = nh. 

One has actually the estimate, proved (by more elementary means) in [16, Theorem 
10.1], 

Un - U(t) = O(to-2 * h) uniformly for nh = t < T. 

This implies, in particular, 

(16) un < C to'8 (t = nh), 

where the constant C is independent of h (sufficiently small) and n with nh < T. 
Inserting (16) in (15) completes the proof. D 

Remark. Concerning estimates for the error propagation in terms of the Lipschitz 
constant of the kernel (part (b) of the above proof), fractional linear multistep 
methods do not differ from previously existing numerical methods. Theorem 1 could 
also be proved by using (in (b)) techniques as in [9, Theorem 5.1]. The reference to 
the presently unpublished paper [16] could thus be omitted. An O( h q) error 
estimate, with q = min(p, p + 13 - 1), would also be obtained with the elementary 
proof of Theorem 2 in [11]. 

We conclude this section with a remark on the error constant c*. For a linear 
multistep method w = (p, a), c* is given by 

hwo(eh-) = 1 + c*hP + O(hP+'). 

For the fractional linear multistep method wA we have, therefore, 

haa(e-h) = 1 + ac*hP + O(hP+'). 

For wA, the constant ac* plays a similar role as the error constant c* for w (this is 
implicit in [15, Section 3]). We continue to call c* the error constant of aa. 
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3. Stability. In many applications, Abel equations (1) are stable as t -s co; see, 
e.g., [10], [19]. One would then wish stable behavior also for the discretized equation 
(2), and, in particular, for the propagation of the error. As in [14],we study the 
linearized equation 

(17) y(t) = f(t) + P(a) J (t - s)G ly(s) ds, t >, 0 0 < a < 1. 

For jarg X - IT < (1 - a/2)'i the solution of (17) satisfies 

y(t) -O 0 as t -s co whenever f(t) converges to a finite limit, and 
y(t) is bounded wheneverf(t) is bounded. 

Applying a convolution quadrature (2) to (17) yields 
n 

(18) yn = fn + haX E? y(a) , n > . 
j=O 

Here fn = f(tn) + hGXE7...ownjyj. We assume that wnj = O(nl- '),so that (fn) con- 
verges (is bounded) if f(t) converges as t -s 00 (is bounded, resp.). 

As in [14], we extend the classical stability concepts for linear multistep methods to 
convolution quadratures wa: 

The stability region S is the set of all z = haX for which the numerical solution 

(yn) given by (18) satisfies 

F- 0 as n -s co whenever (fn ) converges to a finite limit. 

The method is A-stable if S contains the analytical stability region jarg z - IT < 

(1- a/2)'7. 
The method is A((p)-stable if S contains the sector jarg z - 7TI < (P. 
It is well-known that the stability region of a linear multistep method w = (p, a) 

equals C \ { p(g)/a(t); 1D1 > 1) = C \ {1/w(D); < < 1). An identical characteriza- 
tion holds for wa. 

THEOREM 2. The stability region of a fractional linear multistep method (4), (5) is 
given by 

S = C\{1/w(D); 1I1 < 1). 

Proof. The proof is based on Theorem 3 of [14]. Let 9 (i= 0,... ,r) and D 

(j = 0... . ,s) denote the zeros of absolute value 1 of p(D) and a(D), respectively. By 
(4) we then have 

r S 

W01M = H (1 - tit) H 0 (1 - * 
i=O j=O 

where u(') is holomorphic in a neighborhood of < < 1. The coefficients of u(') and 
(1 - 4 are in 11, hence also the coefficients of the product of these power series. 
Therefore, 

r 

W0(M = H (1 - Di) V(D), 

i=O 

where the coefficients of v(D) are in 11. If to = 1 is the only zero of absolute value 1 
of p('), we can apply Theorem 3 of [14]. Otherwise, a straightforward generalization 
of that theorem gives the result. r 
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Remark. If h'X Ee S, then the solution of (18) also satisfies: 

(yj) is bounded whenever (f,,) is bounded [14, Corollary 5]. 

As an immediate corollary we obtain the following. 

THEOREM 3. Let the linear multistep method w (p, a) satisfy (4), and consider w' 
defined by (5). Let S., and S,,, denote the stability regions of w and &a, respectively. 
Then, we have 

(a) (C \ S,-) = (C \ Sc)a. 
(b) wa is A-stable if and only if w is A-stable. 
(c) With 7T - = p a('T - ), w' is A(p)-stable if and only if w is A(I4)-stable. 0 

Example. The k-step backward differentiation formula (BDFk) satisfies for k < 6 
assumption (4) with p = k and is A(4)-stable for some 4 > 0, see [18]. For a = 2 

the fractional BDF method (BDFk)1/2 is therefore A('7T/2)-stable for all k < 6. 
Combining part (b) with Theorem 2.2 in Dahlquist [5] yields 

THEOREM 4. The order, p, of an A-stable fractional linear multistep method cannot 
exceed 2. The smallest error constant, c* = 1/12, is obtained for the fractional 
trapezoidal rule, defined by 

a()(2 1 -)* 

4. Numerical Example. The integral equation 

y(t) = (t_ S-s12(y(S) - sins)3 ds 

arises fr-o-m.a parabo-bounda-ry, value problem in. the the-oryof s- uperfluidit-y [-0; 
We have applied the (BDF4)'/2 method (fourth-order backward differentiation 
formula to power 1/2, see [15, Example 2.8]) to this equation. The quadrature 
weights were computed as described in [15]. The numerical results at t 8 are given 
in Table 1. The exact solution is y(8) = 0.3236412904. This value has been obtained 
numerically using various methods with small step sizes. The computations were done 
in FORTRAN double precision on the IBM 370/168 of the University of Heidel- 
berg. 

TABLE 1 

h numerical solution error 

0.1 0.3236520328 1.0710 - 5 
0.05 0.3236421096 8.1910 - 7 
0.025 0.3236413206 3.0210 - 8 
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